Exercise 135

For the following exercises, P is a point on the unit circle. a. Find the (exact) missing coordinate value of each point and b . find the values of the six trigonometric functions for the angle θ with a terminal side that passes through point P. Rationalize denominators.

$$
P\left(\frac{7}{25}, y\right), y>0
$$

Solution

The given point P on the unit circle is shown below. $y>0$ means that it's in the top half.

Zoom in on the right triangle formed by $P . \theta$ is the counterclockwise angle from the positive x-axis.

The hypotenuse has a length of 1 because P is on the unit circle. The sides of a right triangle are related by the Pythagorean theorem, and this allows us to determine y.

$$
\begin{gathered}
\left(\frac{7}{25}\right)^{2}+y^{2}=1^{2} \\
y^{2}=1^{2}-\left(\frac{7}{25}\right)^{2} \\
y^{2}=\frac{576}{625} \\
y=\frac{24}{25}
\end{gathered}
$$

Therefore, the six trigonometric functions are

$$
\begin{aligned}
& \sin \theta=\frac{y}{1}=y=\frac{24}{25} \\
& \cos \theta=\frac{\frac{7}{25}}{1}=\frac{7}{25} \\
& \tan \theta=\frac{y}{\frac{7}{25}}=\frac{\frac{24}{25}}{\frac{7}{25}}=\frac{24}{7} \\
& \csc \theta=\frac{1}{y}=\frac{25}{24} \\
& \sec \theta=\frac{1}{\frac{7}{25}}=\frac{25}{7} \\
& \cot \theta=\frac{\frac{7}{25}}{y}=\frac{\frac{7}{25}}{\frac{24}{25}}=\frac{7}{24} .
\end{aligned}
$$

